Leetcode Count Complete Tree Nodes Java Solution

Given a complete binary tree, count the number of nodes.

Note:

Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

Example:

Input: 
    1
   / \
  2   3
 / \  /
4  5 6

Output: 6

Solution 1:

class HackerHeap {
  public int countNodes(TreeNode root) {
    if(root == null) return 0;
      Queue<TreeNode> q = new LinkedList<TreeNode>();
      q.add(root);
      int cnodes = 0;
      while(!q.isEmpty()){
          TreeNode curr = q.poll();
            if(curr.left!=null){
                cnodes++;
                q.add(curr.left);
                if(curr.right!=null) q.add(curr.right);
            }else if(curr.right==null){
                cnodes++;
            }else{
                q.add(curr.right);
            }
      } 
      return cnodes;
  } 
}

Solution 2:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class HackerHeap {

public int countNodes(TreeNode root) {
    // if the tree is empty
    if (root == null) return 0;

    int d = computeDepth(root);
    // if the tree contains 1 node
    if (d == 0) return 1;

    // Last level nodes are enumerated from 0 to 2**d - 1 (left -> right).
    // Perform binary search to check how many nodes exist.
    int left = 1, right = (int)Math.pow(2, d) - 1;
    int pivot;
    while (left <= right) {
      pivot = left + (right - left) / 2;
      if (exists(pivot, d, root)) left = pivot + 1;
      else right = pivot - 1;
    }

    // The tree contains 2**d - 1 nodes on the first (d - 1) levels
    // and left nodes on the last level.
    return (int)Math.pow(2, d) - 1 + left;
  }
   public int computeDepth(TreeNode node) {
    int d = 0;
    while (node.left != null) {
      node = node.left;
      ++d;
    }
    return d;
  }

  // Last level nodes are enumerated from 0 to 2**d - 1 (left -> right).
  // Return True if last level node idx exists. 
  // Binary search with O(d) complexity.
  public boolean exists(int idx, int d, TreeNode node) {
    int left = 0, right = (int)Math.pow(2, d) - 1;
    int pivot;
    for(int i = 0; i < d; ++i) {
      pivot = left + (right - left) / 2;
      if (idx <= pivot) {
        node = node.left;
        right = pivot;
      }
      else {
        node = node.right;
        left = pivot + 1;
      }
    }
    return node != null;
  } 
}